
A Monte Carlo uncertainty analysis of ozone trend predictions

in a two dimensional model

D. B. Considine, 1,2 R. S. Stolarski, 2 S. M. Hollandsworth, 2,3 C. H. Jackman, 2, and E. L.

Fleming, 2,3

Received ; accepted

d

/_--//,_

-]i :TJ

Revised version: September 16, 1998

Short title: A MONTE CARLO UNCERTAINTY ANALYSIS

1Joint Center For Earth System Science, University of Maryland,

Maryland

2NASA Goddard Space Flight Center, Greenbelt, Maryland

3Space Applications Corporation, Vienna, Virginia

College Park,



2

Abstract. We use Monte Carlo analysis to estimate the uncertainty in predictions

of total 03 trends between 1979 and 1995 made by the Goddard Space Flight Center

(GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics.

The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients,

and heterogeneous reaction parameters which are model inputs. The uncertainty

represents a lower bound to the total model uncertainty assuming the input parameter

uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in

1970 and integrated for 26 model years through the end of 1995. This was repeated 419

times using input parameter sets generated by Latin Hypercube Sampling. The standard

deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to

quantify the model uncertainty. The 34% difference between the model trend in globally

and annually averaged total O3 using nominal inputs and atmospheric trends calculated

from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data

is less than the 46% calculated la model uncertainty, so there is no significant difference

between the modeled and observed trends. In the northern hemisphere midlatitude

spring the modeled and observed total O3 trends differ by more than la but less than

2a, which we refer to as marginal significance. We perform a multiple linear regression

analysis of the runs which suggests that only a few of the model reactions contribute

significantly to the variance in the model predictions. The lack of significance in these

comparisons suggests that they are of questionable use as guides for continuing model

development. Large model/measurement differences which are many multiples of the

input parameter uncertainty are seen in the meridional gradients of the trend and

the peak-to-peak variations in the trends over an annual cycle. These discrepancies

unambiguously indicate model formulation problems and provide a measure of model

performance which can be used in attempts to improve such models.
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1. Introduction

Two dimensional (2D) models of stratospheric photochemistry and dynamics are

used to study the changes that have occurred in column Oa levels over the past two

decades and the factors responsible for those changes. The models are valuable for these

studies because they are simple enough to be run for many years, but still describe the

seasonal, meridional and vertical structure of the atmosphere.

Comparison of 2D model predicted total Oa changes with observations tests

the adequacy of our understanding of the processes that have modified atmospheric

Oa concentrations recently. Model/observation discrepancies are often taken as an

indication that the model is incorrect and some important process is missing from the

model formulation and our understanding. For instance, Solomon et al. [1996] noted

that the agreement between the total 03 time series calculated from total ozone mapping

spectrometer (TOMS) data and a 2D model was significantly improved by adding to

the model a background sulfate aerosol layer which reproduced observed variations of

the aerosol layer over the TOMS observing period. Jackman et al. [1996] included a

parameterization of solar ultraviolet flux variations in addition to a realistically varying

background sulfate aerosol and also found better agreement between the model and

observations.

This "standard" method of utilizing 2D models to interpret observations has proved

fruitful, but is limited because uncertainties in the values of model input parameters

such as chemical reaction rates result in uncertain model output. If this uncertainty

is large compared to a model/measurement discrepancy, then no significance can be

attributed to the difference as it might easily be due to an input parameter error rather

than a problem with the model formulation.

The propagation of input parameter uncertainties through atmospheric

photochemistry and dynamics models is time-consuming but straightforward.

The most common method to date is the Monte Carlo technique [Stolarski et al., 1978;
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Stolarski and Douglass,1986;Douglassand Stolarski, 1987;Thompsonand Stewart,

1991;Gao et al, 1996; Stewart and Thompson, 1997; Chen et al., 1997; Fish and

Burton, 1997]. There has not been a great deal of work in this area, perhaps because

it is generally felt that many important processes such as those controlling atmospheric

transport are so crudely parameterized that input parameter uncertainties are likely

to be small in comparison. Although this may be true, the goal of this paper is to

quantitatively assess the uncertainty in 2D model predictions of 03 trends and to use

this information to interpret comparisons between the model predictions and TOMS

observations of trends in total 03. If a model/measurement discrepancy is rendered

insignificant by known uncertainties in the input parameters, additional unquantified

sources of uncertainty will not affect this result.

In this paper we use a Monte Carlo technique to evaluate the uncertainty in the O3

trend predictions of the GSFC 2D model. We consider the effects of uncertainties in

chemical reaction rates, photolysis coefficients, and heterogeneous reaction rates. The

model includes a parameterization of the solar cycle variation and a realistic variation

of the sulfate aerosol surface area density between 1979 and 1995. In Section 2, we

briefly describe the version of the GSFC 2D model used in these studies. In Section 3,

we discuss the Monte Carlo method and details of the runs analyzed in this paper. In

Section 4, we present the results of the Monte Carlo uncertainty analysis. We summarize

our results and draw some conclusions in Section 5.

2. Model Description

The Goddard Space Flight Center 2D model has been described fairly completely

in numerous previous publications [e.g., Jackman et al., 1996, and references therein].

We briefly summarize its features here.

The model has a 10 degree latitudinal resolution, with the midpoints of the 18

latitude bands located at -85°,..., +85 °. The vertical coordinate is log-pressure with



a resolutionof about 2 kilometers. The model usesthe residual circulation formulation

describedin Fleming et al. [1995]. Constituents are advected using the second-order

moment scheme of Prather, [1986]. Note that the Jackman et al. [1996] study uses a

somewhat different residual circulation formulation and a piecewise-parabolic advection

scheme instead of second-order moments. These differences do not affect the conclusions

of this study.

The model contains a fairly complete description of stratospheric chemical

processes. It calculates the concentrations of 62 species. Of these, 28 are transported,

and the remainder are calculated using photochemical equilibrium assumptions. Family

approximations are used for O,, NO,, C10_, and Brx species. There are 106 gas phase

chemical reactions in the model chemical scheme. The reaction rates are calculated from

values specified in DeMore et al., [1994].

Heterogeneous reactions occur on a background sulfate aerosol layer. The sulfate

aerosol surface area density distribution used to calculate the reaction rates is based on

satellite extinction measurements made between 1979 and 1995 as described in Jackman

et al. [1996]. The distribution represents the temporal variation of the zonal mean

atmospheric sulfate aerosol layer in response to the various volcanic eruptions which

have occurred since 1979. Heterogeneous reactions on Type 1 (nitric acid trihydrate) and

Type 2 (water ice) polar stratospheric clouds (PSCs) are also included. The PSC surface

area densities are calculated as in Considine et al. [1994]. All of the heterogeneous

reactions included in the model are included in the Monte Carlo input parameter set

described in Section 3 below. They are listed in Table A3 of the appendix.

There are 45 photolytic decomposition reactions included in the model. The

photolysis coefficients are specified from a photolytic source term look-up table

generated with the Anderson radiation code described in Anderson and Lloyd, [1990].

Cross sections are taken from DeMore et al., [1994]. The model also includes a

parameterization of solar cycle variations in the solar UV flux, again as described in



Jackmanet al. [1996].

3. Monte Carlo Methodology

In a Monte Carlo analysis of the uncertainty in a particular model output, the

model is run many times using a different set of input parameter values in each run.

Each set is a combination of possibly correct input parameter values which are chosen

on the basis of the specified uncertainty in each of the input parameters. Each input

parameter value set results in different model output. The ensemble of model output

values produced by the Monte Carlo runs is then used to characterize the output

uncertainty resulting from uncertainties in the input parameters.

Parameters

Table A1 of the appendix lists the 93 chemical reactions whose'uncertainties are

propagated through the model in this study. Since the model includes 106 gas phase

reactions in all, 13 reactions are not included as Monte Carlo parameters. These

reactions are only important in the mesosphere so their neglect has no bearing on the

study of uncertainty in total O3 predictions.

To understand how values used in the Monte Carlo runs are chosen for a particular

reaction, consider a bimolecular reaction with the Arrhenius form,

k(T)=Aexp(_RE (1)), (1)

where k(T) is the reaction rate at temperature T, A is a constant, and E/R is the

activation energy in Kelvin. To make the discussion below easier to follow, note that

this can be rewritten in terms of the reaction rate at 298K, k29s:

k(T)=k29sexp(E(1 (2)



Both k298 and E/R are measured quantities and therefore are uncertain. In a Monte

Carlo study, these uncertainties are represented with probability distributions which are

then sampled in some way to obtain the set of values used in the Monte Carlo runs.

DeMore et al. [1994] provides an estimate of the uncertainty of k298 and E/R,

denoted f298, and AE/R, respectively. The publication also provides an equation for

determining the uncertainty in the reaction at any temperature T,

This expression cannot be used directly in a Monte Carlo study because it implies

a different probability distribution characterizing the reaction uncertainty at each

temperature. Sampling multiple probability distributions to obtain rates for a single

reaction would destroy the Arrhenius form of the reaction rate.

In this paper we assume that the uncertainty in k298 is described by a lognormal

probability distribution and the uncertainty in E/R is described by a normal

distribution. A lognormal distribution is chosen for k29s to exclude choosing negative

values for this quantity, which would be physically unrealistic. No such constraint exists

for E/R, so we characterize its uncertainty using a normal distribution with mean E°/R

and standard deviation AE/R taken from DeMore et al. [1994].

The upper uncertainty bound for k29s is specified in DeMore et al. [1994] by

+ o
k298=k298f29s, where k_98 is the nominal value of the rate. Taking the logarithm of this

relationship results in,

ln(k+s) = ln(k_gs) + ln(f20s). (4)

Since the upper uncertainty bound of a quantity is typically specified as one

standard deviation above its mean value, this form suggests that we can describe the

uncertainty in the logarithm of k29s by a normal distribution with a mean of ln(k_gs)



and standarddeviation ln(f29s). With this choicethe uncertainty in k_gs is described by

the lognormal distribution:

_ln 2 _ )
1 exp (k298)

P(k29s) = V/_27r)(k29sln(f29s) ) -_n2(f--_gs) . (5)

To choose a rate for a bimolecular reaction in a Monte Carlo run, a value for k29s is

chosen by sampling Equation 5 and a value for E/R is chosen by sampling the normal

distribution describing its uncertainty. The rate of the reaction for that Monte Carlo

run is then constructed from Equation 2. This method preserves the Arhennius form of

the bimolecular reaction rates, as desired.

It should be noted that DeMore et al. [1994] does not provide a specific definition

of the uncertainty bounds listed in the document. The publication instead states that

the uncertainties are subjective and are not based on a rigorous statistical analysis of

the available measurements for each rate. The interpretation of these limits we have

adopted in this paper is therefore our own. While reasonable, it is not unique. For

instance, Stewart et al. [1996] made the identification f29s = 1 + s/m, where s and m

are the mean and standard deviation of the lognormal distribution characterizing the

uncertainty in k298. With this reasonable assumption, the standard deviation of ln(k29s)

is not In(f298) as we assume but (ln(1 + (f29s - 1)2)) (1/_). This function increases slightly

faster than ln(f29s) as f29s increases, but not significantly so.

Termolecular reactions are treated similarly to the bimolecular case. DeMore et al.

[1994] provides the functional form for a termolecular reaction in the low-pressure limit,

T)-"ko(T) = koa°°[M] 3--6-6 ' (6)

where [M] is the number density of air, and koa°°[M] is the effective bimolecular

rate of the reaction at 300 Kelvin in the low pressure limit. DeMore et al. [1994] also

Ak 3°° and An for k a°° and n, respectively. We generateprovide uncertainty estimates ----o "-O
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a lognormal distribution from ko3°° and Ako3°° from which to pick values for the Monte

Carlo runs and a normal distribution from n and An. For simplicity, we have ignored

the uncertainty of the termolecular reactions in the high pressure limit. Thus, the

uncertainty distributions generated for the termolecular reactions underestimate the

uncertainty in these reactions implied by the DeMore et al. [1994] values.

Table 2 of the appendix lists the 45 photolytic reactions whose uncertainties are

propagated through the model in this study. The uncertainty distributions for 27 of the

reactions were generated from the cross section uncertainty estimates listed in Table 5

of DeMore et al., [1994]. For the remaining reactions, an uncertainty of f_ -- 1.2 was

arbitrarily chosen. The cross-section uncertainties were applied at all wavelengths.

The lognormal probability distribution characterizing the cross section uncertainty was

generated similarly to the lognormal distribution characterizing k29s discussed above.

We assumed that the uncertainty in the logarithm of the cross section was characterized

by a mean value ln(a°()_)) where cr° is the nominal cross section value and A is the

wavelength, and standard deviation ln(f_). We also assumed that the solar flux was

uncertain by a factor f_f = 1.1, and varied its value accordingly in each Monte Carlo

run.

Table 3 of the appendix lists the heterogeneous reaction parameters whose

uncertainties are propagated through the model in this study. In addition to the surface

reaction probabilities we also consider the size distributions of the Type 1 and Type

2 PSCs to be uncertain and the supersaturation required before the PSCs form. The

uncertainties listed in Table 3 of the appendix were mostly taken from Table 59 of

DeMote et al. [1994]. However, Table 59 did not provide uncertainty estimates for

several of the reaction parameters. For these cases we chose an uncertainty based on a

reading of the DeMore et al. [1994] table notes, personal communication with laboratory

experimentalists [D. Hanson, personal communication, 1996], or primary laboratory

measurement sources. These cases are indicated in footnotes to Table 3.
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Note that the conclusionsof this paper are valid only to the extent that the

characterizationof the input parameteruncertaintiesdescribedaboveis reasonable.If

this is not the case,then the output uncertainty determinedfrom the Monte Carlo runs

will not reflect the actual uncertainty in the model results.

Latin Hypercube Sampling

Consider the uncertainty propagation of a single input parameter. A set of N values

for the parameter are chosen and the model is run N times, once for each value. The

variance in the model output of interest for the N-run set characterizes its uncertainty

due to the input parameter. To be valid, the set of N input parameter values used in

the runs must correctly represent the uncertainty of the input parameter. If a model

run requires significant computer time, then N must be made as small as possible in

order for the study to be practical. However, it must still be large enough for the input

parameter uncertainty to be well-sampled. It is therefore important to find an efficient

method for selecting the input parameter values.

Consider two different techniques. The first is to randomly pick N input parameter

values such that the probability of obtaining a particular value is equivalent to the

probability that it is the true value of the parameter. The second method is to divide the

input parameter range into N equal probability segments and take one input parameter

value from each segment. The first method is known as Random Sampling (RS) and

the second, when generalized to multiple input parameters, is known as Latin Hypercube

Sampling (LHS). [e.g., McKay et al., 1979]. It has been found that the number of

model runs necessary to obtain a good characterization of the uncertainty in an output

parameter can be significantly smaller when LHS is used to choose the input parameter

sets. This is because the LHS technique ensures that each input parameter is sampled

over its entire range with the appropriate probability distribution in fewer runs than is

necessary for random sampling. While LHS has not been proved to be better than RS
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in general,wechosethis method on the basisof its demonstratedsuperiority in McKay

et al. [1979]. We show below that the error in our application is slightly smaller than

would be expected from a RS approach.

To use Latin Hypercube Sampling with M input parameter values and N runs,

the range of each of the M input parameters is first broken into N equal probability

segments. Then, one input parameter value is chosen for each segment. The result

is a set of M lists of values, (one for each parameter) each N values long. An input

parameter set for a Monte Carlo run is obtained by picking one value at random from

each of the lists and then striking that value from the list so it will not be used again.

Picking the values at random minimizes correlations between different input parameters.

The process is repeated until N input parameter sets are generated.

Run Specifics

In our Latin Hypercube Sampling methodology we used a value of N -- 50. That

is, for each of the 158 parameters we considered, we divided the uncertainty range

into 50 equal probability segments. We then constructed 50 input parameter sets by

picking a value at random from each of the 50-value lists and then striking the value

so it could not be picked again. We repeated this process 9 times to obtain a total of

450 input parameter sets. This "replicated LHS" procedure [Iman and Conover, 1980]

was adopted to allow us to evaluate the error in our predictions of model uncertainty, as

explained below. Of the 450 runs we attempted, 419 completed successfully and 31 runs

failed. The largest number of failed model runs for any 50 run replication was 6. We

did not attempt to rerun the failures with a modified code because we felt a less than

10% failure rate would have a minimal impact on our results and we wanted to ensure

that the model formulation was the same in all of the runs. Each run was initialized in

1970 using the same initial conditions and run for 26 years, through the end of 1995.

Each run used a different input parameter set. Since the model adjusts to changes
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in input parameterswithin about 5 years, the study period after 1979should not be

affectedby the model initialization. During the courseof each26 year run, sourcegas

boundary conditions at the ground weretime-steppedas describedin Jackman et al.

[1996]. Increases in chlorofluorocarbon emissions result in an increased stratospheric

chlorine loading, contributing to the changes in 03 concentrations which are the subject

of this paper.

From 1970-1979, the sulfate aerosol distribution was set to 1979 values for the

appropriate month. From 1979 to 1995 the aerosol distribution was specified from the

sulfate aerosol time series mentioned above. Also as mentioned above, a parameterization

of the ll-year variation in the solar ultraviolet flux was also included in each run.

It is important to determine whether or not the number of Monte Carlo calculations

made for this study is adequate. Imagine a Monte Carlo study with a very large number

of runs. Each run gives a prediction for the model output of interest, which for example

might be the percent change in globally and annually averaged total O3 between 1979

and 1992. As the number of runs becomes infinitely large, a limiting distribution for the

model output with a mean value # and a standard deviation a will be formed. Each

model run produces a single sample of this limiting distribution. The a characterizes

the uncertainty in the model output and is the quantity we attempt to estimate from a

finite number of Monte Carlo runs.

In the case where the model input variables are chosen at random, each Monte

Carlo run will be a random sample of the model output distribution. If N Monte Carlo

runs are made a mean PN and standard deviation aN can be calculated to estimate tt

and a. The standard error of these estimates is simply a/_(N). This suggests that

with N=419, the ttN and aN from a Random Sampling Monte Carlo calculation will be

within about 5% of # and a. If LHS provides no benefit over Random Sampling then

this is typical of the error in our uncertainty estimates.

The replicated LHS technique allows us to quantify the error in our predictions of a
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because we have 9 independent 50-run estimates of a. The best estimate of a will be the

average of the 9 aN and the error will be given by the standard error of _-_. Consider

for example the change in globally and annually averaged total O3 between 1979 and

1992. The nominal value for this model output is -5.75%. The average a---_=2.66%, with

a standard error of 0.11%. Therefore the error in our estimate of a is about 4.1%, which

is consistent with the error we would expect from a Random Sampling Monte Carlo

approach and is sufficient for the purposes of this paper.

4. Results

Total Ozone Trends

Figure 1 compares the time series of the percent change in model annually averaged

global total O3 since 1979 with observations made by the TOMS instrument. The model

result using nominal input values is the solid line, while the TOMS observations are

shown by the crosses. (Note that the nominal case corresponds to the median rather

than the mean of the Monte Carlo runs.) The dashed lines above and below the model

nominal case indicate plus and minus one standard deviation from the nominal values.

The dotted lines on the plot show the high and low extrema of the Monte Carlo cases.

Figure 1 shows that the agreement between the TOMS values and the nominal case is

very good. The agreement is significantly better than would occur if solar cycle and

sulfate aerosol variability were not included in the calculation, as shown in Jackman

et al. [1996]. There is some disagreement between the model and observations due to

year-to-year variability in the observations which does not occur in the model. Neither

interannual dynamical variability nor the quasibiennial oscillation are included in the

model formulation, which could account for some of the discrepancy.

The uncertainty in the model time series resulting from uncertain input parameters

is substantial. For instance, the percent change in global total 03 between 1979 and
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1993(the yearof the maximum percentchangefrom 1979)is about 6.5% + 2.5% (la),

indicating that the nominal model trend and the actual model trend (the trend the

model would calculate if it were supplied a correct set of input parameter values) differ

in relative terms by at most 40% with a likelihood of about 2 in 3. Figure 1 also shows

that the typical model/observation discrepancy is significantly smaller than the la error

in the model time series. The relatively large model uncertainty indicates that these

differences could easily be due to errors in the input reaction rates, and it can thus be

argued that the differences between the TOMS data and the nominal model time series

seen in Figure 1 are insignificant. This is essentially equivalent to the statement that

the good agreement between the nominal model time series and the TOMS time series

could be fortuitous - it might easily be that the model/measurement discrepancy would

increase if the model were given the correct set of input parameter values as input.

As mentioned above the TOMS time series is influenced by interannual dynamical

variations which do not occur in the model. This complicates the comparison of the

observed and modeled changes in total 03 resulting from the buildup of chlorine in the

stratosphere. In order to compare more directly the observed and calculated trend in

O3 resulting from chlorine increases we have fit the total O3 time series from each of

the Monte Carlo runs to a function similar to that used in the standard trend analysis

of TOMS total O3 data using the same regression technique [McPeters et al., 1996].

We can then directly compare the model trend in O3 with the TOMS trend. Figure 2

compares the globally and annually averaged total 03 trend from the Monte Carlo runs

with the trends calculated from the TOMS data. The histogram in the figure shows the

distribution of the globally averaged model 03 trend produced by the 419 Monte Carlo

runs. The histogram shows the probability that a Monte Carlo run produces a trend of

a certain magnitude, resolved to a bin size of 0.4 percent per decade. The solid vertical

line in the figure marks the nominal case trend of-3.02 percent/decade, and the dashed

vertical lines show the ±la variation of 1.38 percent per decade around the nominal
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result. The dashed-dotvertical line showsthe TOMS result of-2.26 percent per decade.

The plot showsthat the nominal model caseis about 34%larger than the TOMS trend

and that the two lie within the la uncertainty in the model result. This demonstrates

moreconvincingly than the time seriescomparisonabovethat the differencebetweenthe

modeland the TOMS trend is not significant. Errors in the nominal input parameterset

could relatively easilybe hiding better - or worse- model/measurementdiscrepancies.

Figure 3 showsthe time seriesof annually averagedtotal 03 at 45degreesnorth and

south, again in terms of the percentchangesince1979.The sameplotting symbolsare

usedhere as in Figure 1. We have alsoincluded a 2-yearrunning averageof the TOMS

data on the plot to smoothout the interannualand biannualvariability and focuson the

decadaltime scales.This comparisontests the modelmorestringently than the globally

averagedtotal O3comparisonshownin Figure 1due to the larger influenceof transport

processeson column 03 at higher latitudes. Again weseevery goodagreementbetween

the model nominal caseand the TOMS observations.The discrepanciesdue to one-and

two year interannual variations are larger in theseplots than in the globally averaged

case,but overall the model/measurementagreementis good enoughto be considered

fortuitous giventhe uncertainty in the model time seriesfrom the Monte Carlo runs.

To focuson the annually averaged03 trend asa function of latitude wecompare

in Figure 4 the TOMS and model annually averagedtotal 03 trends as a function of

latitude obtained usingthe regressionmodel describedabove. As beforethe solid line

representsthe nominal case,the dashedlines showthe ±la variation from the nominal

case,and the crossesrepresentthe TOMS data. Consideringthe model uncertainty

in the tropics there is a statistically significant difference(at the la level) between

the nominal trend of about 2 percent/decadeand the TOMS values. However,the

TOMS-calculated trends are alsouncertain and it is possiblethat errors in both the

model calculationsand the TOMS data produce the discrepancybetweenthe model

nominal result and the TOMS trend.
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In the northern hemispheremidlatitudes Figure 4 showsthat the model nominal

annually averagedO3 trend and the TOMS-derivedtrend agreevery well. However,the

figure alsoshowsthat the uncertainty in the model result at theselatitudes is large. For

instance,at 55°N the model annually averagedO3 trend is 3.8 i 1.8 percent/decade,

an uncertainty of about 47%. Becauseof this large uncertainty, the good agreement

betweenthe model and the observationsis meaningless.It could easilybe that errors in

onethe nominal input parametersare fortuitously counteringa model formulation error

which would be apparent if the correct input parametervalueswereused.

An obviousdifferencebetweenthe model and TOMS annually averagedtotal O3

trendsshownin Figure 4 is the meridional gradientof the trend, which is significantly

larger in the TOMS observationsthan in the model nominal case. The difference

betweenthe model and the observationscan be examinedmore closelyby calculating

the meridional gradientsin eachof the Monte Carlo runs and comparing the variability

in the gradient with the difference between the model and TOMS gradients. Figure 5

shows this comparison. The model meridional gradient of the annually averaged total

03 trend (percent per decade per degree latitude) is plotted with its =t=la variability

and is compared to the gradients in the TOMS annually averaged trends. The largest

disagreements between the model nominal case and the TOMS results occur in the

northern hemisphere at 35 ° and in the southern hemisphere at -55 ° . Both the northern

and southern hemisphere model/measurement discrepancies are about 4-5 times the la

uncertainty in the model gradient. These discrepancies are so large that it is unlikely

that errors in the nominal input parameter set could be responsible for the large

model/observation discrepancy. The weak model meridional gradients seen in the model

are therefore likely to be due instead to errors in the model transport formulation.

Two-dimensional models have well-known problems in correctly capturing the

characteristics of meridional transport in the atmosphere. These models often

overestimate the amount of mixing between the tropics and midlatitudes, and between
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the midlatitudes and the polar vortex during winter [Bacmeisteret al., 1995; Fahey

et al., 1996]. It is thus not surprising that such a model would poorly represent the

meridional gradients in the O3 trends. The model/measurement discrepancy seen in

Figure 5 illustrates how a well-known model transport problem is revealed in this

uncertainty analysis. Similar sorts of discrepancies may point to other less understood

model formulation problems.

Seasonal Total Ozone Trends

Total 03 trends vary significantly over the course of the year and it is important

to understand the factors contributing to this variation. Figure 6a shows the seasonal

and meridional variation of Earth's total O3 as calculated from version 7 TOMS data

from instruments on the Nimbus 7 and Meteor 3 satellites between November, 1978

and October, 1994. Conclusions concerning a model's ability to capture the trends in

total O3 are typically drawn from such a plot. Figure 6b shows the corresponding result

from the the GSFC 2D model for the nominal input parameter set. Note that this

differs slightly from that presented in Jackman et al. [1996] due to a somewhat different

transport formulation in the two simulations.

Figure 6c shows the la uncertainty of the model calculation. This figure can be used

to determine the significance of the discrepancies between the TOMS and model total

O3 trends shown in Figures 6a and 6b, respectively. Figure 6c shows that the smallest

uncertainties occur in the tropics, while the largest occur in the late spring/early

summer in both the northern and southern hemisphere. The maximum uncertainty

occurs in the southern hemisphere high latitudes where the model calculates the largest

trends in total 03. Note, however, that as a fraction of the model calculated trend, the

southern hemisphere high latitude uncertainty is actually a minimum, with the trend

uncertainty as low as 25% of the trend itself. The maximum relative uncertainty of

about 70_ occurs at southern high latitudes in mid-winter. Throughout most of the
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year and overmost of the globe,however,the relative uncertainty in the model is trend

is fairly uniform, varying between35%and 50%.

It is often noted that modelssignificantly underestimatetotal O3 trends in the

northern hemispheremidlatitudes in March [e.g.,Solomonet al., 1996]. The Monte

Carlo calculation allows us to determine whether there really is a significant difference

between the model calculation and the observations, or whether the discrepancy might

easily be due to an error in the nominal model input parameters. Figure 7 is a plot of

the probability distribution of the Monte Carlo runs for the middle of March, at 45°N.

As before, the Monte Carlo runs are distributed into bins with a width of 0.4 percent

per decade. The solid vertical line indicates the model nominal trend of-3.59 percent

per decade. The dashed vertical lines indicate the =i=la variation around the nominal

case of 1.63 percent per decade. The dash-dot vertical line indicates the TOMS trend

value of-6.42 percent per decade. The plot shows that the difference between the model

nominal case and the TOMS trend is significant at the la level, but not at 2a. It is thus

possible, but not very likely, that the discrepancy between the model nominal case and

the TOMS data results from an error in the nominal case input parameters. One might

refer to the model/measurement discrepancy in this case as being marginally significant.

It is important to remember however that the uncertainty calculated from these Monte

Carlo calculations does not include variations in the model transport formulation as a

source of model uncertainty and is a lower bound to the total uncertainty in the model

calculation. It is possible that the combination of dynamical and input uncertainties

would be large enough to render the differences between the model and the observed

total O3 trends insignificant at this latitude and time of year.

One fairly obvious difference between the TOMS trends shown in Figure 6a and the

model trends in 6b is a much larger seasonal variation in the observed trend than the

model calculated trend. We note that a weak seasonal trend variability is a common

model problem [World Meteorological Organization (WMO), 1995]. To examine this
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more closelywe plot in Figure 8 the seasonalamplitude of the total O3 trend as a

function of latitude, wherethe amplitude is calculated asthe differencebetweenthe

maximum trend and the minimum trend at a particular latitude. The trend amplitude

for the modelnominal caseis the solid line, the dashedlines show the +la variation

around the nominal case, and the crosses show the TOMS trend amplitudes. The figure

shows that the model underestimates the trend amplitude at most latitudes, but is

particularly far from the mark in the northern hemisphere midlatitudes. Figure 8 also

shows that the trend amplitude does not vary much between the Monte Carlo runs, so

the difference between the model nominal case and the TOMS seasonal trend amplitude

is up to 8.75 times a at 45 °. In contrast to the discrepancy between the measured

and modeled global total 03 trend (Figure 2) or the March midlatitude total O3 trend

(Figure 7), this is a clear case where it is extremely unlikely that the difference between

the model and the TOMS result is caused by an input parameter error. Here, it is very

clear that the model formulation is incorrect, and resources can confidently be directed

toward a real as opposed to a possible model problem.

Sources of Uncertainty

The Monte Carlo methodology provides a good estimate of the uncertainty of model

output given a good characterization of the uncertainty in the model input parameters.

However, the technique does not directly calculate which of the input parameters

contribute strongly to the model output uncertainty and which do not. In this section

we attempt to determine indirectly which parameters have the largest influence on the

model output uncertainty.

Two factors determine the importance of the uncertainty in an input parameter

to the model output uncertainty: 1. The sensitivity of the model output to changes

in that parameter; and 2. The magnitude of the input parameter uncertainty. If the

model output of interest is insensitive to the input parameter, it does not matter how
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uncertain the value of that parameter is. On the other hand, a very preciselyand

accuratelymeasuredinput parametermay not contribute greatly to the model output

uncertainty evenif there is a largesensitivity.

A typical strategy for determiningthe contribution of the model input parameters

to the model output uncertainty in a Monte Carlo study is to fit the model output to an

analytic function of the input parametersusing a regressiontechnique [e.g.,Gao et al.,

1996; Stewart et al., 1996]. The standard fitting function assumes a linear relationship

between each input parameter and the output of interest. Thus,

y = ao + alpl + a2p2 + ... + ampm, (7)

where y is the model output of interest, pl,... ,Pro are the fitting parameters, and

a0,..., am are the coefficients obtained from the regression analysis characterizing the

linear relationship between the input parameter and the model output. There is no

guarantee that this method will work everywhere in the model domain and at all times.

However, as shown below the fit is often reasonable.

If the fit is good, then standard error propagation suggests that the contribution of

the variance of each input parameter to the variance in the output can be approximated

by

+ k + .... (s)

Given Equation 5, Oy/Oki = ai. To obtain a normalized result we calculate the

fractional contribution of the ith parameter to the variance using

2 2

fi -- ai _i
Ei 2 2 (9)

ai ai

We first examine the sources of uncertainty in the northern hemisphere midlatitude

spring column 03 trends. To do this we have fit the percent change in column 03



21

between1980and 1990at 45°Nin Marchusing a linear function of the input parameters

as in Equation 5. The changein column O3 is most highly correlatedwith the reactions

evaluatedat the 38.5 mbar level. This is the pressurelevel with the largest 03

concentrationchangesand hencethe largest contributor to the changein column O3.

The multiple linear correlation coefficientfor the fit is 0.91, indicating that the fitting

equation can explain 91% of the variancein the changein column O3calculated in the

MonteCarlo runs. The quality of the fit is shownin Figure 9, whichcomparesthe model

calculatedpercent changein column O3 on the x-axis with the prediction of the linear

relation expressedby Equation 5 on the y-axis. The points are reasonablycompactly

arrangedalong the 1-to-1 line as is requiredof a good fit. There is a tendencyfor the

linear fit to underestimatesomewhatthe caseswith the largestreductions in total O3.

The regressionresults in two measuresof a parameter'simportance: First is the

linear correlation coefficientspecifying the degreeto which eachindividual parameter

correlateswith the changein total O3. Secondis the fractional contribution to the total

varianceof the changein total 03 calculatedfrom the multiple linear regressionfit, as in

Equation 7. The parameters which are most highly correlated with the change in total

O3 also tend to be the largest contributors to the variance. Only a few of the fitted

parameters have either high correlation coefficients or large fractional contributions

to the total variance. There is also a significant correlation between the two - if a

parameter has a large correlation coefficient it tends also to be a strong contributor to

the variance. This implies that only a few of the parameters control the response of

model total O3 distributions to changes in chlorine loading.

Table 1 shows the 11 parameters which have an absolute linear correlation coefficient

larger than 0.1 and a fractional contribution to the variance larger than 2%. For a 419

run data set, the probability that a correlation coefficient exceeds 0.1, 0.15, and 0.2

simply by chance is about 4%, 0.2%, and 0.004%, respectively. Thus it is likely that a

physical relationship exists between these parameters and the model column 03 change.
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The secondcolumnof Table 1 lists the correlation coefficentsfor the reactionsand the

third column lists the fractional contribution of eachof the tabulated parametersto the

total variancein column O3in the linear regressionfit.

Table 1 showsthat about 68%of the variance in the column O3 changefrom

multiple linear regressionfit is producedby these11 reactions.The table also illustrates

the importance of the odd nitrogen family in controlling the responseof model total

O3 to chlorine perturbations. Parameter 1 is the primary producerof NOy in the

atmosphere;the more NOv, the more increasesin Cly will be stored in the reservoir

forms via reactionsof C10 with the NOy radicals NO and NO2. Parameter 10would

tend to reducethe amount of backgroundNOv and hencereducethe fraction of Clv

in reservoirforms. Parameters2,5, and 7 convert reserviorforms of NOv to reactive

formswhich can tie up Cly in its reservoir forms. Parameter 8 is an essential step in the

formation of HNO3, removing forms of NO v which can react with Cl_ species.

Parameters 3 and 9 are reactions which directly control the partitioning of Cly.

They both force the partitioning of Clu toward more active forms, resulting in negative

correlation coefficients. Parameter 4 also has an understandable effect, reducing the

amount of OH available to convert HC1 to reactive chlorine and resulting in a positive

correlation. Parameter 11 produces numerous changes which would be expected to

reduce the O3 trend such as increasing the production of HOx and NO v and changing

the partitioning of Cl_ in favor of reservior forms. It is not obvious which of these might

dominate the others.

The parameters shown in Table 1 are those which are most strongly correlated with

the changes in column O3 produced by increases in stratospheric Cly concentrations.

It is interesting but not surprising to note that a different set of parameters are highly

correlated with background 03 concentrations. A set of 9 of these parameters for

45°N, in March at 38.5 mbar, are shown in Table 2. The listed parameters have linear

correlation coefficients greater than 0.1 and contribute more than 1% to the variance
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in the multiple linear regressionfit. The multiple linear correlation coefficientfor this

fit is 0.96,which is better than for the fit to changesin column 03 amountsdiscussed

above. By far the most highly correlatedparameter is O2 photolysis, which is the

primary O2 production mechanism.This parameter is itself responsiblefor almost 60%

of the variancein background03 concentrations,and together these9 input parameters

accountfor about 85%of the total variancein the 03 levelscalculatedfrom the multiple

linear regressionfit.

The fact that different input parameterscontrol the backgroundO3 concentrations

and its responseto Cly perturbations suggeststhat it is not possibleto concludefrom

a model'sgood reproduction of observedO3levels that its responseto a perturbation

will be reliable. This shouldbe establishedinsteadfrom a model'sability to reproduce

observedchangesin 03.

Figure 6a showsthat the largestmodel trends in column O3 occur in the southern

hemispherehigh latitude spring. The input parameterswhich apparently control the

sensitivity of the model southernhemispherehigh latitude regionin spring areshownin

Table 3. The multiple linear correlationcoefficienthereis about 0.81,sothe regression

model is lessable to accountfor the variancein the model calculatedchangein column

O3 at this location than at midlatitudes. Also, the fraction of the total variance

contributed by the 11 listed parametersis about 54%, lower than for the midlatitude

column 03 changediscussedabove.

Severalof the important midlatitude northern hemisphereinput parameters

shownin Table 1 reappearin this table. However,the increasedrole of heterogeneous

reactionsand halogenchemistry is reflected in the appearancein the table of the

Type 2 PSC radius, the C10 + BrO reactions, and the heterogeneousreaction

CIONO2+ H20 _ HOC1+ HNO3on ice. The rate of this reaction hasa factor of 10

uncertainty associatedwith it accordingto DeMore et al., [1994], which might explain

its appearance on this list over other ice-catalyzed reactions which have larger sticking
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coefficients.

5. Summary and Conclusions

We havepresenteda Monte Carlo estimateof the uncertainty in total Oa trend

predictionsmadeusingthe GSFC 2D model. This uncertainty results from uncertainties

in input gas phase and heterogeneous reaction rates, and photolysis coefficients. We

have used Latin Hypercube Sampling to reduce the number of runs necessary to obtain

a good estimate of the uncertainty. Given this technique, the 419 runs completed for

this study should result in an error of no more than a few percent.

The uncertainty in the model predictions of globally and annually averaged trends

in total Oa are large enough such that the difference between the model predictions

and the trends calculated from Nimbus 7 and Meteor 3 TOMS data are insignificant.

We find a marginally significant difference between modeled and observed equatorial

annually averaged total Oa trends which is insignificant when errors in the TOMS

calculation are considered in addition to the model uncertainty. At mid to higher

latitudes the differences between measured and observed annually averaged trends in

column O3 are again insignificant. The difference between modeled and observed total

Oa trends in March at 45°N is marginally significant when considering the uncertainty in

the model calculation only. Assuming the input parameter uncertainty estimates to be

true, it is possible that the differences between the model results and the observations

in these cases arise from errors in the input parameters and not from an incorrect model

formulation. Thus it seems that efforts to increase the agreement between the model

and the observations in these cases by changing the model formulation might be wasted

without more precise and accurate specification of the model input parameters.

Good agreement between a model and the observations listed above might simply

be due to fortuitously compensating errors in some input parameter and the model

formulation, so grading the performance of a model using such observations should also
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be avoided until the differences between the model results and observations can be

shown to be significant.

Clearly significant differences between the modeled and observed trends are seen

in the meridional gradients of the annually averaged trends at midlatitudes and the

seasonal trend amplitude at all latitudes. It is quite unlikely that these differences could

be caused by errors in the input parameters so it is very likely that they are the result

of an incorrect model formulation. Further model development efforts can be directed

toward resolving these discrepancies.

The contribution of a particular input parameter uncertainty to the total model

output uncertainty depends both on the magnitude of the input parameter uncertainty

and the sensitivity of the model to that parameter. Direct information concerning the

contribution of each input parameter is not available in a Monte Carlo analysis, but

an approximation can be made by fitting the model output to a linear function of the

input parameters and then determining the contribution of the variance in each input

parameter to the total variance of the regression model fit. This technique reveals that

only a few of the input parameters contribute much to the variance at any particular

location. Reducing the uncertainty of those parameters would produce the largest

decreases in model uncertainty. The regression analysis also shows that the parameters

controlling the variance in background O3 concentrations are not the same as the ones

producing variance in the model response to Cly increases.

We stress that the validity of these output uncertainty calculations depends

on a correct evaluation of the input parameter uncertainties. If these are generally

overestimated then the uncertainty in the model calculations will also be overestimated.

There is some observational evidence to suggest that interpreting the DeMote et al.

[1994] values as la uncertainties overestimates the actual uncertainties in the tabulated

rates. Cohen et al. [1994] made this assumption when comparing observed HOx

partitioning from aircraft observations to the predictions of a simple analytical model,
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and found better model/measurement agreement than expected from the calculated

uncertainties. In such a situation model/measurement discrepancies that indicate model

problems might incorrectly be judged to be the insignificant consequence of input

parameter errors. A more specific recommendation on how to interpret the DeMore et

al. [1994] uncertainty estimates would be helpful in future uncertainty studies.
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Figure 1. Percent change in the GSFC 2D model annually and globally (65°S - 65°N) averaged

total Oa since 1979 compared with observations made by the TOMS instrument. The solid

line is the model simulation using nominal rates, the dashed lines indicate the ±la variation

calculated from the 419 model runs analyzed in this study, and the dotted lines indicate the

high and low extreme cases. The crosses represent annually and globally averaged TOMS data.
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Figure 2. Globallyandannuallyaveragedtotal O3trendsfromtheMonteCarlorunscompared

with trendsderivedfromtheTOMSdata. Shownisahistogramof theMonteCarlorun results

groupedinto 0.4%/decadebins. The histogramgivesthe probability that a MonteCarlorun

resultedin a particulartrend ingloballyandannuallyaveragedtotal 03. Thesolidverticalline

is the trend for thenominalcase,thedashedlinesshowthe _:la variationin the MonteCarlo

runs,andthedashed-dottedline indicatesthe TOMSresult.

Figure 3. Percentchangesince1979of annually averaged total Oa for the GSFC 2D model at

45 ° North and South compared to TOMS observations. The solid, dashed, and dotted lines, as

well as the crosses, are as in Figure 2. The long dashed line shows a 2 year running average of

the TOMS data.

Figure 4. Latitude dependence of the annually averaged trend in total Oa, in %/decade. The

solid line shows the modal nominal case, the dashed lines indicate the ±la uncertainty in the

result calculated from the Monte Carlo runs, and the crosses indicate the annually averaged

trend in total 03 calculated from the TOMS data.

Figure 5. Meridional gradient in annually averaged trend in total 03 calculated by the GSFC

2D model, its uncertainty from the Monte Carlo runs, and comparison to TOMS observations.

The solid line shows the nominal case gradient in the annually averaged total 03 trend, in

_0/decade/degree latitude. The dashed lines show the ±la variation in the gradient calculated

using the Monte Carlo runs. The crosses show the trend gradients calculated using Nimbus 7

and Meteor 3 TOMS observations.

Figure 6. Meridional and seasonal dependence of the TOMS total 03 trends, and model-

calculated total 03 trends and trend uncertainty, a. TOMS trends calculated from version 7

Nimbus 7 and Meteor 3 TOMS data in %/decade. b. The model trend using nominal values

of the input parameters and the same statistical model as in the TOMS calculations, minus a

QBO term. c. Monte Carlo estimate of the uncertainty in the model-calculated total 03 trend,

in %/decade.
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Figure 7. Probability distribution of total 03 trend calculations for March at 45°N from

the Monte Carlo runs compared to the observed trend. Shown is a histogram of 419 model

calculations divided into 0.4 %/decade bins and normalized to be expressed as a probability.

The model result using nominal input parameter values is the solid vertical line. The dashed

lines show the +la values. The dot-dash line shows the total O3 trend calculated with TOMS

data for March at 45°N.

Figure 8. Seasonal total 03 trend amplitude as a function of latitude. The amplitude is

defined as the difference between the maximum and the minimum trend in total 03 at a

particular latitude. The nominal case, ±la variation, and TOMS values are indicated by the

solid line, dashed lines, and crosses, respectively.

Figure 9. Comparison of model calculated 1980-1990 percent change in column 03 at 45°N

in March with predicted changes from a multiple linear regression fit to the model values. The

crosses show the values for each of the 419 Monte Carlo runs.
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Table 1. Regressionanalysisof March 1980-1990percentchangein column03 at 45° and

pressureof 38.5mbar. Analysisis basedon419MonteCarlorunsfit to 158input parameters.

PARAMETER CORRELATION FRACTION

N20 + O(XD)--+NO+ NO

HNO3+ OH--+NO3+ H20

HCI+ OH--_C1+ H20

03+ OH --+HO2+ 02

N205-+-hu --+ NO2 + NO3

N205 + H20 --+ 2HNO3(sulph)

N205 + M --+ NO2 + NO3 + M

NO2 + 03 -_ NO3 + 02

CI+ 03 _ CIO + 02

N20 + hv --+ N2 + O

03 + hu _ 02 + O(1D)

O.35O 15.19

0.295 12.06

-0.289 6.84

0.273 3.50

0.272 12.02

-0.259 3.76

0.198 2.03

-0.194 4.50

-0.187 3.15

-0.161 2.05

0.108 2.79
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Table 2. Regressionanalysisof 419MonteCarlorunsfor March03 at 45° and38.5mbarwith

colocatedinput parameters.

PARAMETER CORRELATION FRACTION

O2+hv_O+O

O-t-O2T M ---->O3+ M

NO + 03 -+ NO2+ 02

0 3 -_-hv --> 02 + O

OH + 0 3 --_ HO2 + 02

NO2 + O ---->NO + 02

HO2 T 03 --> OH + 202

03 + hv _ 02 + O(1D)

HC1 + OH --+ C1 + H20

0.723 59.86

0.3O7 10.32

-0.156 1.39

-0.141 3.82

-0.120 1.46

-0.119 2.18

-0.115 3.67

-0.106 1.26

-0.105 1.16



34

Table 3. Regressionanalysisof A column 03 between 1980 and 1990 in October at 75°S.

Analysis is based on 419 Monte Carlo runs fit to 158 input parameters evaluated in October at

75°S and 39 mbar.

PARAMETER CORRELATION FRACTION

O2 + hu ---+O + O

Type 2 Aerosol Radius

BrO + C10 --+ Br + C1OO

N20 + O(1D) -+ NO + NO

HNO3 + OH _ NO3 + H20

N205 + H20 _ 2HNO3(sulph)

BrO + C10 _ Br + OC10

HC1 + OH _ C1 + H20

O+O2+M_O3+M

C1ONO2 + H20 -+ HNO3 + HOC1

CH4 + C1 -4 CH3 + HC1

0.314 10.47

0.253 6.07

-0.177 3.61

0.173 4.07

0.171 6.87

-0.156 2.21

-0.146 5.78

-0.141 4.57

0.126 3.41

-0.111 4.00

0.100 2.98
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Table 3. Gasphasereactionsvariedin MonteCarloruns

Ak 3°° AE/R or AnParameter Name f29s or ----o

R1 O + 02 + M -+ 03 + M 5.e-35 0.5

R2 O + 03 -_ 202 1.15 250

R3 H + 02 + M -_ HO2 -{-M 5.e-33 0.5

R4 OH + 03 _ HO2 + 02 1.3 300

R5 HO2 + 03 _ OH + 202 1.3 500

R6 C10 + HO2 _ HOC1 + 02 1.4 250

R7 C1 + H202 -+ HCI + HO2 1.5 500

R8 O(_D) + M -+ O(3p) + M 1.2 100

R9 NO + O3 ---+ NO2 + 02 1.2 200

R10 NO2 -f 03 ---+ NO3 -{- 02 1.15 150

R11 H + 03 --+ OH + 02 1.25 200

R12 OH + OH + M _ H202 q- M 3.0e-31 2.0

R13 OH + C1ONO2 --+ HOC1 + NO3 1.5 200

R14 CH4 + OH --+ CH3 ÷ H2O 1.1 150

R15 CH302 + NO _ CH30 + NO2 1.5 180

R16 OH + CH3C1 _ H20 + CH2C1 1.2 250

R17 CH30 + 02 -+ CH20 + HO2 1.5 300

R18 OH -_ NO2 -{-M --+ HNO3 + M 3e-31 0.7

R19 HO2 + HO2 --+ H202 -{- 02 1.3 200

R20 N + 02 --+ NO + O 1.25 400

R21 CH20 + O -+ HCO + OH 1.25 250

R22 CH302 + HO2 --+ CH3OOH + 02 2.0 400

R23 C1 + H2 _ HC1 + H 1.25 200

R24 C1 + 03 -+ C10 + 02 1.15 100

R25 C10 + O -+ C1 + 02 1.3 70
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Table 3. (continued)

Parameter Name f29s or Ak 3°° AE/R or An

R26 Cl + CH4 -+ HC1 + CH3 1.1 150

R27 HC1 + OH -+ Cl ÷ H20 1.3 100

R28 C10 + NO -+ C1 ÷ NO2 1.15 100

R29 H202 + OH --+ H20 + HO2 1.2 100

R30 H2 + OH -+ H20 + H 1.2 400

R31 N205 + M -+ NO2 + NO3 + M 1.3 500

R32 C10 + NO2 ÷ M -+ C1ONO2 + M 3e-32 1.0

R33 H202 ÷ O ---+HO2 ÷ OH 2.0 1000

R34 HO2 + NO2 + M --+ HO2NO2 + M 3e-32 0.4

R35 C1ONO2 ÷ O -+ C10 ÷ NO3 1.5 200

R36 HNO3 + OH --+ NO3 + H20 1.3 100

R37 NO ÷ HO2 -+ OH ÷ NO2 1.2 80

R38 H20 + O(1D) --+ 2OH 1.2 100

R39 OH + HO2 --+H20 + 02 1.3 200

R40 OH + O _ H + 02 1.2 I00

R41 HO2 + O -+ OH + 02 1.2 I00

R42 NO2 + O -+ NO + 02 I.i 120

R43 NO2 + O + M -+ NO3 ÷ M 1.0e-32 1.0

R44 N20 + O(ID) --+ 2NO 1.3 100

R45 NO2 ÷ NO3 ÷ M --+ N205 ÷ M 0.5e-30 1.0

R46 N ÷ NO ---+N2 ÷ O 1.3 100

R47 H2 + O(1D) --+ OH ÷ H 1.2 100

R48 CH4 + O(1D) _ CH3 ÷ OH 1.2 100

R49 CH3 ÷ 02 + M --+ CH302 ÷ M 1.5E-31 1.0

R50 CH20 ÷ OH -+ H20 ÷ HCO 1.25 200
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Table 3. (continued)

Ak 300 AE/R or AnParameter Name f29s or --.-o

R51 HCO + 02 _ CO + HO2 1.3 140

R52 C1 + HO2 -_ HC1 + 02 1.5 200

R53 CC14 + O(1D) --+ 4C1 + Products 1.2 100

R54 OH + HO2NO2 _ H20 + 02 -4-NO2 1.5 270

R55 CH4 + O(1D) -+ H2 + CH20 1.2 100

R56 OH + CH3OOH -+ H20 + CH302 1.5 200

R57 OH + OH -4 H20 + O 1.4 240

R58 C10 + OH --+ CI + HO2 1.5 150

R59 HOC1 + OH --+ H20 ÷ CIO 3.0 500

R60 C1 + CH20 _ HC1 + HCO 1.15 100

R61 HO2 + HO2 + M _ H202 + M 1.3 400

R62 CFC10 + O(1D) --+ Products 2.0 100

R63 CF20 + O(1D) --+ Products 2.0 100

R64 C1 + HO2 _ OH + C10 2.0 200

R65 BrO + NO --+ NO2 + Br 1.15 130

R66 HO2NO2 + M _ HO2 + NO2 + M 5.0 1000

R67 NO + NO3 -+ 2NO2 1.3 100

R68 OH -4-CH3CC13 --_ 3C1 + Products 1.1 150

R69 NO + O + M --+ NO2 + M 2.0e-32 0.3

RT0 N20 + O(1D) _ N2 + 02 1.3 100

RT1 CF2C12 + O(1D) --+ CIO + C1 + Frag 1.3 100

R72 N A- NO2 --+ N20 -4-O 1.5 100.

R73 CFC13 + O(1D) --4 C10 + 2C1 + Frag 1.2 100

R74 02 + O2(1D) _ 202 1.2 100

R75 03 + O2(1D) --+ 202 + O 1.2 500
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Table 3. (continued)

Ak 300 AE/R or AnParameter Name f29s or --.-o

R76 Br + 03 --4 BrO + 02 1.2 200

R77 Br + HO2 -4 HBr + 02 2.0 600

R78 BrO + C10 -4 Br + C1OO 1.25 200

R79 BrO + BrO -4 2Br + 02 1.25 150

R80 OH + HBr -4 H20 + Br 1.2 250

R81 BrO + NO2 + M -4 BrONO2 + M 0.6e-31 0.8

R82 CH3Br + OH _ Br + Products 1.1 150

R83 CHC1F2 + OH --4 C1 + 2f+ Products 1.1 150

R84 C2C13F3 + O(1D) -4 3C1 + Products 2.0 100

R85 C2C12F4 + O(1D) -4 2C1 + 4f+ Products 2.0 100

R86 C2CIF5 + O(ID) _ Cl + 5f+ Products 1.3 100

R87 C10 + C10 + M -4 C1202 + M 0.4E-32 0.5

R88 BrO + CIO -4 Br + OCIO 1.25 200

R89 BrO + CIO -4 BrC1 + 02 1.25 200

R90 BrO + O -4 Br + 02 1.5 150

R91 BrO + HO2 -4 HOBr + 02 1.5 500

R92 Br + CH20 -4 HBr + CHO 1.3 200

R93 CH4 + O(1D) -4 H + CH30 1.2 100
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Table 2. Photolyticdecompositionratesvariedin MonteCarloruns.

Parameter Name Uncertainty

J1 02 -+ O + O 1.20

J2 03 --+ 02 + O(1D) 1.25

J3 03 --+ 02 + O 1.10

J4 H20 --+ H + OH 1.20

J5 NO3 --+ NO2 + O 2.00

J6 HNO3 _ OH 4- NO2 1.30

J7 NO2 --+ NO 4- O 1.20

J8 H202 _ 2OH 1.30

J9 N205 _ NO2 + NO3 2.00

J10 CH20 --+ HCO + H 1.20

Jll CH20 --+ H2 4- CO 1.20

J12 CO2 -+ CO + O 1.20

J13 CHaOOH --_ CH30 + OH 1.50

J14 N20 ---+N2 4- O 1.20

J15 C1ONO2 --+ C1 + NO3 1.30

J16 NO _ N + O 1.20

J17 NO3 --+ NO + 02 1.30

J18 HC1 --+ H + C1 1.10

J19 CC14 --+ 4C1 + Fragment 1.10

J20 CH3C1 --+ CH3 + C1 1.10

J21 CFCI3 -+ 3C1 + Fragment 1.10

J22 CF2C12 --+ 2C1 + Fragment 1.10

J23 HOC1 -+ OH + C1 1.40

J24 HO2NO2 -+ OH + NO3 2.00

J25 H20 -_ H2 + O(1D) 1.20
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Table 2. (continued)

Parameter Name Uncertainty

J26 CH3CC13--+3Cl+ Fragment 1.20

J27 BrO --4Br + O 1.20

J28 BrONO2---+Br + NO3 1.40

J29 CH3Br--4 CH3 -k-Br 1.20

J30 CF3Br --4 Br + 3F + Fragment 1.30

J31 CF2C1Br _ Br + C1 + 2f+ Fragment 2.00

J32 CHC1F2 --+ C1 + 2f + Fragment 1.20

J33 C2C13F3 --4 3C1 + 3f+ Fragment 1.20

J34 C2C12F4 --4 2C1 + 4f÷ Fragment 1.20

J35 C2C1F5 -4 C1 + 5f+ Fragment 1.20

J36 C1202 --4 C1 + ClOO 1.20

J37 BrC1 --+ Br + Cl 1.20

J38 CO2 --+ CO + O(1D) 1.20

J39 HO2NO2 ---4 HO2 + NO2 2.00

J40 CC1FO --+ C1 + f + Fragment 1.20

J41 CF20 --+ 2f + Fragment 1.30

J42 CH4 ---+CH3 + H 1.20

J43 CH4 ---+CH2 + H2 1.20

J44 CH4 --+ CH + H + H2 1.20

J45 CH302 ---4 CH3 + O2 1.20
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Table 3. Heterogeneousreactionparametersvariedin MonteCarloruns.

Parameter Name Uncertainty

H1 C1ONO2 + HC1 _ HNO3 + C12 (sulf) 5 a

H2 C1ONO2 + H20 -+ HNO3 + HOCI (sulf) 3 a

H3 N205 + H20 _ 2HNO3 (sulf) 2

H4 HOC1 + HCI --+ H20 + Cl2 (sulf) 3 b

H5 BrONO2 + H20 --+ HNO3 + HOBr (sulf) 2 c

H6 HOBr + HCI --+ H20 + BrC1 (sulf) 3 c

H7 CIONOz + HC1 --+ HNO3 + Cl2 (nat) 3

H8 C1ONO_ + H20 --+ HNO3 + HOC1 (nat) 10 a

H9 N205 + H20 _ 2HNO3 (nat) 3

H10 N205 + HC1 --+ HNO3 + CIONO (nat) 2

Hll HOC1 + HC1 -+ H20 + Cl: (nat) 3

H12 C1ONO2 + HC1 --+ HNO3 + C12 (ice) 2 b

H13 C1ONO2 + H20 -+ HNO3 + HOCI (ice) 10

H14 N205 + H20 --+ 2HNO3 (ice) 3

H15 HOCI + HC1 --+ H20 + C12 (ice) 3

H16 HOBr + HC1 --+ H20 + BrC1 (ice) 3

H17 Type 1 (nat) mode radius 2 a

H18 Type 2 (ice) mode radius 2 _

H19 Supersaturation ratio (nat) 2 e

H20 Supersaturation ratio (ice) 1.2 e

"Chosen on basis of DeMore et al. [1994] Table 59 notes.

bD. R. Hanson, personal communication, 1996.

CBased on Hanson and Ravishankara, [1995].

aPersonal judgement of uncertainty.

eCorresponds to 1K uncertainty in supersaturation temperature.
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